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Abstract-A new, general type of two-dimensional foldable structures is presented. which extends
and generalises the standard trellis-type foldable structure consisting of two sets of parallel straight
rods connected by hinges. It is shown that any structure consisting of rigid. multi-angulated rods.
i.e., straight rods with kinks at the hinge positions. can be folded if the rods form a tessellation of
parallelograms. This discovery is exploited to investigate the structural layouts of flat and curved
structures which can be folded along their perimeter. :[; 1997 Elsevier Science Ltd.

1. INTRODUCTION

A simple, two-dimensional foldable structure can be made from two sets of parallel, straight
rods connected by pivots, or scissor hinges, at all intersection points. A scissor hinge is a
revolute joint whose axis is perpendicular to the plane of the structure. Both structures
shown in Fig. 1 are of this type, and both can be folded by freely deforming their cells in
shear until the two sets of rods become approximately parallel, for e~ OC or e~ 1800

•

During folding, each set of collinear pivots remains collinear, and all pivots become
collinear-in theory, at least-in the fully-folded configuration. This is the principle behind
many commonly used foldable structures, e.g. garden trellises, wine racks, awnings, etc.
The same concept has already been used for more exotic applications, such as movable
theatre structures (Pinero, 1961, Escrig, 1993), but it affords only limited freedom to
engineers designing structures whose shape, boundaries, etc. are already specified. Hence,
numerous efforts have been made to find more general solutions.

Broadly speaking, there are two different ways of extending this simple, intuitive
concept to more general shapes. One option is to look for a repeating building block with
an internal degree of freedom which allows folding; another option is to design a complete
structure, whose shape is determined mainly by its particular application, and then to
modify its geometry, member properties and layout, connections, etc. until the structure
can be folded and deployed without damage, albeit with some elastic deformation of its
members.

(a) (b)

Fig. 1. Trellis-type foldable structures formed by two sets of straight. parallel rods.
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Fig. 2. (a) Ordinary pantographic element consisting of stri!!ght rods. <QLSymmetric angulated

element with a constant angle of embrace and AE = BE = CE = DE.

The advantage of the first, modular approach is that, once a suitable building block
has been found, then a whole class of foldable structures may become available simply by
changing the number and size of the blocks. Two- and three-dimensional assemblies of
pairs of straight bars connected by scissor hinges, which form single-degree-of-freedom
mechanisms (Clarke, 1984, Escrig, 1985), have been used as building blocks for many
complex structural mechanisms (Zanardo, 1986, Kwan and Pellegrino, 1991). However, it
is not generally true that a structure consisting of foldable modules is always foldable: it is
also required that the interfaces between modules deform in a compatible fashion, and in
some cases there may also be one or more global conditions that need to be satisfied
(Pellegrino and You, 1993, You and Pellegrino, 1994).

A recent development, of crucial importance to this paper, was the invention of the
simple angulated element (Hoberman, 1990), consisting of a pair of identical angulated rods
connected together by a scissor hinge, see Figs 2 and 3. In analogy with elements made
from straight rods, which-under certain conditions-fold while maintaining the end pivots
on parallel lines, angulated elements subtend a constant angle as their rods rotate. This
property is exploited in Hoberman's foldable sculptures (Waters, 1992) and in Servadio's
foldable polyhedra (1994). Among the more practical applications of simple angulated
elements is the Iris Retractable Roof (Hoberman, 1991), a foldable dome with circular plan
consisting of concentric rings connected by scissor hinges.

This approach to foldable bar structures has already produced many ingenious solu
tions, but real, large scale applications have yet to follow. A key disadvantage of this
approach is that any solution is, in a sense, unique, i.e., valid only for a particular shape of
structure and for a specific set of boundary conditions. Furthermore, the number of
solutions currently known is quite small. For example, when designing the plan shape of
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Fig. 3. General t.Y£e oLJ:Ioberrnan's element, formed by identical angulated rods: AE = DE,

BE = CE, IjJ = cp. ADE and BCE are similar isosceles triangles.

the Iris Retractable Roof there are only three free parameters, which are the total number
of rings, the number of angulated elements in each ring, and the length of the angulated
rods. Everything else follows from geometric rules.

The second, global approach to the design of foldable bar structures has been pioneered
by Pinero (1961) and Zeigler (1981,1984,1987,1993) and has been further developed by
Escrig et al. (1989) and Escrig and Valcarcel (1993), The idea is to design foldable structures
by a two-stage process. First, the overall geometry of the structure is decided, such that all
members are unstrained both in the required, fully deployed configuration and also in the
folded configuration, usually a compact bundle where all bars are theoretically parallel.
Second, a detailed structural analysis of the folding process is carried out, to check that
any strains induced by the folding process are sufficiently small (Gantes et aI" 1991). Most
foldable structures based on this approach consist of pairs of straight rods connected by
off-centre scissor hinges. In general, the achievement of satisfactory behaviour during
folding is at the expense of low deployed stiffness, and hence locking elements are usually
incorporated in structures of this type. Although, in principle, any solution can be modified
to suit the requirements of a particular application, even small changes will require some
re-analysis.

We have recently discovered (You and Pellegrino, 1996) a new approach to foldable
bar structures which combines the key advantages of the two approaches described above.
This new approach makes use of a new, large family of foldable building blocks, which we
call generalised angulated elements. These elements subtend a constant angle during folding,
as Hoberman's simple angulated element, but afford much greater freedom than all other
elements that have been used previously. We have also discovered that a series ofcontiguous
angulated rods can be replaced with a single, multi-angulated rod, which is an extension of
the straight rod with collinear pivots used in the simple foldable structures shown in Fig.
1, thus reducing significantly the number of component parts of a structure and the
complexity of its joints. These two discoveries open up a range of new applications for large
scale, foldable bar structures.

Although our discoveries are not restricted to a particular type of application, the
examples that are presented in the paper are aimed towards foldable roof structures for
stadia, swimming pools, etc. (Levy, 1995).

The layout of the paper is as follows. Section 2 briefly reviews the derivation of the
simple angulated element. Section 3 introduces the new generalised angulated elements
(GAE's), which consist of chains of any number of parallelograms, connected to adjacent
elements either by two isosceles triangles, or by two similar triangles. The special properties
of symmetric GAEs are discussed. Section 4 deals with assemblies of simple angulated
elements that form circular, rotationally symmetric foldable structures. Starting from the
solution originally proposed by Hoberman, consisting of separate angulated elements
connected by scissor hinges, it is shown that a geometrically identical, but more efficient
foldable structure can be made from multi-angulated elements. Section 5 deals with foldable
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structures of general shape, consisting of generalised angulated elements. Several con
figurations for foldable roof structures which can be folded along their perimeter, and have
different shape, e.g. rectangular, elliptical, etc., are presented. Section 6 shows that three
dimensional variants of the solutions obtained in the paper can be obtained by projecting
any of these layouts onto a three-dimensional surface. Double-layer foldable structures are
also obtained in a similar way. Section 7 concludes the paper.

2. HOBERMAN'S ANGULATED ELEMENT

Figure 2(a) shows an ordinary pantographic element, made of a pair of identical
straight rods, hinged together by a scissor hinge at E. The end connectors, A, B, C, and D
define two straight lines OP and OR. The element is symmetric with respect to the line OQ.
A relationship betweeniY., the angle subtended by this element, and 8, the deployment angle,
can be obtained by noting that

CG-BF = FGtaniY.j2

where

CG = CE sin e/2

BF = BE sin e/2 = AE sin e/2

and

FG = AC cos ej2.

Substituting eqns (2)-(4) into eqn I

(CE - AE) sin e/2 = AC cos e/2 tan iY./2

or

CE-AE
tan iY./2 = tan e/2.

AC

(I)

(2)

(3)

(4)

(5)

(6)

It is obvious from eqn (6) that iY. varies with e. Supposing that the positions ofOP and OR
are fixed, it can be concluded that it is impossible to mobilise the pantographic element
ABCD, i.e., to vary the angle e, if A, D and B, C are allowed to move only along the lines
OP and OR (Zanardo, 1986).

This difficulty can be resolved (Hoberman, 1990, 1991) by using non-straight, "angu
lated" rods, and hence by moving the pivot E to the new, special position shown in Fig.
2(b). It can be readily shown that

CF-AF EF
taniY.j2 = tanej2+2=.

AC AC
(7)

For AF = CF, i.e., F half way between A and C, the first term on the right-hand-side
vanishes. Hence, iY. becomes a constant for all es, and it is now possible to mobilise the
pantographic element with A, D and B, C lying, respectively, on the lines OP and OR.

Therefore, deployment requires that the following two conditions be satisfied

AF = CF and

From egn (8), it can be shown that

EF
iY. = 2arctan=.

AF
(8)
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(a) (b) 0
Fig. 4. Simplest Ty~I GAE, forme<!..Qy angulated rods with equal semi-length but different kink

angles AE = DE, BE = CE, Ijt l' C{I. ADE and BCE are isosceles triangles.

L CAE = LACE = ':1./2

LAEC = 180-':1.

and hence the distance between an end hinge and the internal hinge is a constant

I = JAF 2 +EF2
.

(9)

(10)

(11)

Hoberman (1990, 1991) has shown that the above derivation can be extended to non
symmetric angulated elements, which are still made of identical angulated rods. Figure
3 shows the most general element considered by Hoberman. It satisfies the following
conditions

AE = DE, BE = CE, and t/J = ¢ = 180°-':1. (12)

and henc~he angulated rods form two isosceles triangles. Note that AE is not necessarily
equal to BE.

3. GENERALISED ANGULATED ELEMENTS

A generalised angulated element (GAE) is a set of interconnected angulated rods that
form a chain of any number ofparallelograms with either isosceles triangles (Type 1 GAE)
or similar triangles (Type II GAE) at either end. A generalised angulated element embraces
a constant angle as the element is folded or expanded. Separate proofs of the angles of
embrace of Type I and Type II GAEs are given next.

GAEs without any parallelograms are considered first, for simplicity, and it is shown
that Hoberman's simple angulated element is a special case of both Type I and Type II
GAEs.

3.1. TypeIGAE
Before discussing the general Type I GAE, consider first the angulated element shown

in Fig. 4, which has

AE = DE, BE = CE and, in general, t/J i= ¢. (13)

From Fig. 4, the sum of the internal angles in the quadrangle OGEF is 3600 and, since
L OFE = LOGE = 90', the angle IX can be expressed as

IX = 180-( LAEF+fJ+ LBEG).

Because L:,.ADE and L:,.BCE are isosceles triangles,

(14)
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Fig. 5. General Type I GAE consisting of two isosceles triangles connected by two parallelograms.

LAEF = ¢~f1 and LBEG = 1jJ~f1.

Hence, substituting eqn (15) into eqn (14)

¢+1jJ
(X = 1800

- -2- = constant

(15)

(16)

which shows that this element subtends a constant angle. Note that Hoberman's element
is re-obtained, when ¢ = 1jJ.

A most interesting special case is obtained when either ¢ = 180°, or IjJ = 180°, which
implies that one rod is angulated, while the other rod is straight.

More general Type I GAEs are made from two or more angulated elements. Figure 5
shows an example with three elements, which satisfy the following conditions:

(i) each closed loop is a parallelogram, i.e.,

CE=BJ and EB=CJ, HJ=IP and IJ=HP.

(ii) ,6,AED and ,6,NPM are isosceles triangles, i.e.,

DE MP
====1.
AE NP

(17)

(18)

Note that the structure shown in Fig. 5 can be regarded as being formed by "cutting" the
element shown in Fig. 4 at the scissor hinge E and inserting parallelograms in between the
triangles formed thus.

Next, it will be shown that the angle (X embraced by this element has constant magni
tude. From Fig. 5, it can be obtained that

(19)

where

(Xl = 180°-( LAEF+f1\ + LBEG)

(X2 = 180°-( LBJK+f12+ LHJL)
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(20)

(21)

LBEG+ LBJK = LBEC and LHJL+ LHPQ = LHJI. (22)

Substituting eqns (20), (21) and (22) into eqn (19) gives

From condition (ii), we know that

(23)

LAED
LAEF = 2 and

LMPN
LMPR = 2 (24)

Note that eqn (21) can be rewritten as

and adding up these two equations gives

Adding <PI + ljJ3 to both sides of eqn (26) and tidying up gives

where

Substituting eqn (27) into eqn (24), and the result into eqn (23) gives

L<p+LljJ
(X = 3 x 1800

- 2 = constant,

i.e., the angle of embrace of a Type I GAE is a constant.

(25)

(26)

(27)

(28)

(29)
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Fig. 6. Simplest Type II GASJorrned h angulated rods with proportional semi-lengths and equal

kink angles AE/DE = CE/BE,I/J = q>. ADE and BCE are similar triangles.

3.2. Type II GAE
Consider first the angulated element shown in Fig. 6, which has

AE

DE

CE

BE'
and t/J = cjJ. (30)

To show that the angle rx is constant in this case, we note that eqn (14) is still valid.
Because .6,.AED and .6,.BEC are similar,

LBEG = LDEF

and, substituting eqn (31) into eqn (14)

rx = 180 -cjJ.

Note that Hoberman's element is re-obtained when

AE CE
====1.
DE BE

(31 )

(32)

(33)

A more general Type II GAE is shown in Fig. 7. This element satisfies the following
conditions

(a)

(b)
Fig. 7. General Type II GAE consisting of two similar triangles connected by two paralielogranJs.
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(i) each closed loop is a parallelogram
(ii) the triangles on the sides, L:.AED and L:.NPM, are similar, i.e.,

DE AE
PM = NP and LAED = LMPN.
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(34)

To show that the angle IX is constant, we note that eqn (23) is also valid for Type II
elements. Also, because of condition (ii)

LAEF = LNPR

and, hence, eqn (23) is equivalent to

IX = 3 x 180" - r.t/J = constant.

It is interesting to notice that, since

(35)

(36)

(37)

and since these angles are equal, eqn (25)-also valid for Type II elements-is equivalent
to

(38)

which shows that the sum of the kink angles of the two sets of angulated rods that make
up a Type II GAE is constant. For angulated elements consisting of two angulated rods
only, eqn (38) becomes t/J = ¢, which agrees with eqn (30).

3.3. An additional property ofsymmetric GAEs
The use of foldable elements that embrace a constant angle does not guarantee that a

structure made from several elements of this type is (i) foldable, and (ii) maintains its shape
during folding. Problems can arise due to a radial shift building up within a GAE, and
causing the hinges on one side to move by different amounts to the hinges on the other
side. It is also possible for a tangential shift to build up, if the hinges on one side of the
element move to a line parallel to the original line. Such problems are particularly critical
when designing foldable structures that form closed loops.

The easiest way round these difficulties is to use symmetric elements. The motion of a
GAE with a single, central axis of symmetry is also symmetric, and hence there will be no
radial mismatch between hinges on either side.

If only the angulated elements of Section 2 are considered, i.e., those made from two
identical angulated rods, then symmetric configurations are obtained only for elements
with

AE = DE = BE = CE and t/J = ¢. (39)

If, however, symmetric GAEs are considered, then many different layouts can be obtained.
Some examples are given in Section 5.
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4. FOLDABLE CIRCULAR STRUCTURES

Figure 8 shows an assembly of eight identical, symmetric, simple angulated elements,
each embracing an angle

3600

C/.=--=45
8

(40)

These elements form a closed, circular ring structure whose shape can vary continuously
between the shapes shown in Fig. 8(a) and Fig. 8(c), through intermediate shapes as shown
in Fig. 8(b). In Fig. 8(a) the deployment angle, defined in Section 2, is 8 = 45C and one set

A

C

(a)

A

C

(b)

A,D

C,F

(c)

Fig. 8. Foldable ring structure formed by identical angulated rods with a kink angle of 135'.
(a) "Expanded" and (c) "retracted" configurations.
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ofangulated rods (broken lines) is partly hidden by the other set. In Fig. 8(c) the deployment
angle is () = 1800 and one set of rods is completely hidden by the other set.

The hinges of this structure lie on three concentric circles at all times. Note that in Fig.
8(a) one of these circles has shrunk to a point, while in Fig. 8(c) two circles coincide. It is
interesting to note that, after reaching a maximum diameter, the circle containing the hinges
A, B, C starts to contract, while the other two circles continue to expand. If the physical
size of members and joints is neglected, the expansion process terminates when the hinges
D, E, and F become coincident with A, B, and C, respectively.

The foldable structure of Fig. 8 is formed by a closed loop of eight identical rhombuses
and it will be shown in Section 5.1 that in such loops there is no geometric mismatch in
different configurations.

The number of angulated elements used in forming a circular loop, as well as the semi
length of the angulated rods, can be varied, but no other changes are possible: all two
dimensional foldable structures with hinges lying on concentric circles are fundamentally
of the same type as the structure shown in Fig. 8. This is because each angulated element
must be symmetric, and geometric compatibility between adjacent elements requires that
all elements remain identical at all stages of folding.

Larger foldable structures based on the solution described above can be formed by
inter-connecting two or more concentric circular rings of matching size (Hoberman, 1991).
Figure 9 shows the simplest way of doing this, using two identical ring structures connected
by a series of hinges lying on the circle that contains the hinge A2 . The expansion of this
structure is limited by the inner ring becoming fully closed, Fig. 9(a), while its retraction is
limited by the outer ring becoming fully stretched. Actually, this is a rather unusual foldable
structure. During folding, its outer diameter initially decreases and then increases back to
the original value, only the size of the central hole increases monotonically. Actually, this
type of behaviour is perfectly suited for large foldable domes, because it is easier to arrange
its supports if the perimeter remains approximately constant. The above solution is the key
to the Iris Retractable Roof (Hoberman, 1991).

Better packaging of the two concentric rings can be achieved by using a slightly smaller
structure for the inner ring. Let L = A2A3 = A3A4 be the semi-length of the angulated
elements that make up the outer ring. The optimal value of the semi-length I of the elements
of the inner ring, 1= AoA) = A)A2, is such that in the fully-expanded configuration AoA2

becomes orthogonal to OPo. This requires

I :x
- = cos-
L 2

which, for octagonal rings (:x = 45°), gives

I
L = 0.92.

(41)

Other values of the ratio 1/L are also acceptable, but produce smaller expansion ratios.
Next, it will be shown that in circular foldable structures made from identical, symmetric

angulated elements, contiguous angulated rods can be connected rigidify to one another, to
form multi-angulated rods. Consider two identical angulated rods of semi-length I, lying in
neighbouring sectors subtending equal angles :x, as shown in Fig. 10. Let node A2 be the
connection point of the two elements. It will be shown that the angle between the two rods,
LA)A2A 3, has constant magnitude. Considering the first angulated rod, which lies between
the lines OPo and OP2, the distance of hinge A2 from point 0 is

(42)

where
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Fig. 9. Foldable circular structure obtained by connecting together two rings like those in Fig. 8.
The members AoA 1A,A,A4• etc. are multi-angulated rods.

(43)

Because

Equation (43) becomes

(44)

Substituting eqn (45) into eqn (42)

(45)
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Fig. 10. Multi-angulated rod.

OA = lcos( LS J A,O-a/2)
2 ~na~ .

Also

o
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(46)

(47)

Considering the second angulated rod, the distance of hinge A2 from point 0 is

OA
2

= A2C3 = lcos( LA3 A 2 C 3 )

sin al2 sin al2

where

Hence

Comparing eqn (46) with eqn (50),

Also

(48)

(49)

(50)

(51)

(52)

The angle between the two angulated elements can be calculated from eqn (47) and eqns
(51)-(52).
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Fig. II. Foldable circular structures formed by multi-angulated rods with kink angles of 165°.

LA 1A2 A3 = LA,A20+ LA 3A 20

= 180°+ LS 3 A 30- LS1A,O = 1800
-tx = constant. (53)

This proof can be extended to any number of contiguous rods of equal semi-length I,
provided that they are at a non-decreasing distance from the centre: when they start to
turn back towards the centre, the angle L S;A;O becomes negative and hence the above
proof is no longer valid. Subject to this condition, the rods can be rigidly linked together
to form a multi-angulated rod with a kink angle of 1800 -tx, eqn 53.

Figure II (a) shows a circular foldable structure containing 48 five-segment multi
angulated rods. This structure has

360
tx = 48/2 = IS".

Figure II(b) shows that modest shape changes can be made by varying the number of
segments in some rods. Figure 12 shows photographs of a model structure with
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(c)
Fig. 12. Model structure built from 24 identical three-segment, multi-angulated rods.
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Fig. 19. Double-layer circular foldable structure with curved upper layer.
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a = 24/2 = 30
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whose 24 identical multi-angulated rods have kink angles of 30", and each rod consists of
three segments of length I = 100 mm. The fully-deployed and fully-folded configurations
of this model are shown in Fig. 12(a) and Fig. 12(c), respectively. Note that the rods cannot
ful1y overlap because of the physical size of the joints.

5. FOLDABLE STRUCTURES OF GENERAL SHAPE

It might be expected that two-dimensional foldable structures with many different
shapes might be made by a straightforward extension of the ideas introduced above. Indeed,
an obvious way of doing this would be to divide any given boundary shape into straight
segments and circular arcs, and then assemble together straight-edged, trellis-type structures
of suitable length, Fig. I, and simple angulated elements with an appropriate angle of
embrace. Unfortunately, a bar structure of this type is not foldable. The problem is that,
although it is possible to vary the semi-length of the simple angulated elements that make
up a circular sector, so that the hinges connecting this sector to its neighbouring trel1is-type
structure are equally, or proportionally spaced in the radial direction, this can be done only
for a particular configuration. The scissor hinges do not remain equally spaced when the
configuration is varied. Hence, a circular sector cannot be connected to a structure consisting
of straight rods, whose scissor hinges are always equally, or proportional1y spaced.

To obtain the layout of a two-dimensional foldable structure with a boundary of
prescribed shape one must begin by finding a foldable base structure, i.e., a structure
consisting of angulated rods whose hinges lie on the prescribed boundary. Once a suitable
layout for the base structure has been selected, extra members can be connected to it by
means of scissor hinges, until the required shape and overal1 dimensions are obtained. It
will be shown that such a structure is foldable and, subject to certain conditions, it remains
foldable if contiguous bars are firmly connected, thus forming a series of multi-angulated
rods.

5.1. Layout of the base structure
Finding a base structure that meets al1 the shape and folding requirements of a given

application is the key to a successful overall solution and yet there is no unique set of rules
leading automatical1y to the best layout ofangulated elements. Therefore, the method wil1 be
explained by describing the procedure which has been followed for a series of representative
examples. Al1 of the examples are of the same basic type, continuous loop structures with
a central hole of variable size. Such structures are suitable for foldable roofs for, e.g. sports
stadia and tennis courts. Open loop structures are subject to fewer restrictions, and hence
much easier to configure using any combination of GAE's.

Figure 13 illustrates a simple technique (Hoberman, 1990) to construct a single-loop
foldable bar structure of any shape. Figure 13(a) shows an illustrative, general polygon
which may be constructed from a series of Hoberman's elements whose internal hinges
coincide with the vertices of the polygon. The semi-length of each angulated rod is equal
to half the length of each side and the two rods belonging to the same element form equal
kink angles, which are equal to the internal angle of the polygon. Hence, in the fully folded
configuration, Fig. l3(b), the elements overlap with the sides of the polygon. Note that half
of the angulated rods are hidden by the other rods. In general, of course, these angulated
elements are not symmetric and hence, according to Section 3.3, a radial mismatch develops
as the structure is folded. However, the overal1 mismatch adds up to zero, Fig. l3(c),
because in this case the angulated elements form a chain of similar rhombuses whose
diagonals are reduced in length by proportional amounts and also remain at constant
angles during folding.

Figure 14 shows a more general type of closed loop structure, whose internal hinges
also coincide with the vertices of the polygon of Fig. 13(a). Here, the angulated rods making
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A

F

(a)

A

F

F

H

Fig. 13. Foldable closed loop structure which folds along a given polygon. The angulated elements
form similar rhombuses.

D

A

H

Fig. 14. Foldable closed loop structure which folds along the polygon of Fig. 13, but consists of
similar parallelograms.

up each element are no longer identical, but still have a kink angle equal to the internal
angle of the polygon, and form a chain of similar parallelograms. This property implies that
the loop structure is foldable, because the sides of the polygon vary by proportional amounts
and hence no geometric mismatch builds up during folding. Note that each of the six
angulated elements used in this solution is a Type II GAE without any parallelograms, as
that shown in Fig. 6.

In addition to the above solutions for base structures forming closed loops of any
shape, greater freedom is available in the case of loops with one or more axes of symmetry.
Basically, any GAE can be used to form the basic repeating unit and since, by symmetry, all
units behave in the same way, geometric compatibility in all configurations is automatical1y
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\
\
\
\
\

(b)

Fig. 15. Closed loop foldable structures whose internal boundary has the shape of a rectangle with
rounded corners. Layout (a) consists of identical rhombuses, while (b) is based on a symmetric

GAE of both Type I and Type II.

satisfied. Figure 15 shows two loop structures whose innermost hinges lie on a rectangle with
rounded comers. The base structure shown in Fig. 15(a) consists of identical rhombuses, and
hence there is no need to invoke symmetry to prove that this structure is foldable. The base
structure shown in Fig. 15(b), though, is based on a symmetric arrangement of GAEs
which are both of Type I and Type n. This can be seen by means of the central line of
symmetry that has been drawn in Fig. 15(b), which divides two opposite rhombuses into
pairs of similar isosceles triangles.

5.2. How to extend the base structure
Any base structure can be extended by the addition of a pair of bars of any length,

connected to one another and to the base structure by scissor hinges. The resulting structure
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will be foldable, like the original base structure, provided that the members added to it are
not collinear. Repeating the same argument it can be shown that any number of pairs of
bars connected by hinges to the base structure will leave its mobility unchanged.

Of greatest practical importance is the particular case of a base structure consisting of
a series of parallelograms, as in Figs 13-15.

Figure 16(a) shows a general, small part of a bar structure consisting of angulated
elements. Additional members are connected to its outer hinges, Fig. 16(b), such that the
quadrangles A2A3BI B2, etc. are parallelograms. This extended structure is foldable because
all additional members are free to rotate with respect to the base structure but, in fact, no
relative rotation between consecutive rods occurs as the structure is folded. i.e., L A IA2A3,

L B j B2B3, etc. remain constant. Consider, for example, L A j A2A3• Because A]A2 and A2A3

remain parallel to BoB t and BIB2, respectively,

(54)

since L BoB t B2 is the kink angle of an angulated rod, which is fixed.
In conclusion, this foldable structure can be made from multi-angulated rods similar

to those introduced in Section 4, as shown in Fig. 16(c), but note that the kink angles along
these rods are no longer equal. The same procedure is valid for all other closed loop base
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Fig. 17. Foldable elliptical structures formed by multi-angulated rods forming tessellations of (a)
rhombuses and (b) parallelograms.
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structures discussed in this section, as for any open loop base structure. Figure 17 shows
two symmetric foldable structures whose internal boundaries have an identical elliptical
shape. In both structures, the inner joints are equally spaced but, while the first layout is a
tessellation of rhombuses whose side lengths are all equal, the layout of Fig. 17(b) is a
tessellation of parallelograms, whose side lengths are not all equal.
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(a)

(b)
Fig. 18. Detail of joint of dome structure.

6. DOME STRUCTURES

The two-dimensional solutions derived above easily extend to curved structures, by
projecting any two-dimensional solution onto a surface with the required shape. Thus, each
multi-angulated rod can be curved out of plane. Of course, all connectors between multi
angulated rods should be perpendicular to the plane of projection.

The folding angle may be restricted if the rods are not allowed to overlap during
folding. This problem can be solved by a proper design of the connections. An example of
a suitable connector between two rods is shown in Fig. 18. In the drawings, B;_1 Bi Bi+ 1is
one of the rods, whilst the other rod A+ I B, C i - I is in two parts. B; C i - 1 has a circular
cross-section cylindrical post of height Hand A,+ I Bi has a cap which can be fitted onto
the post. Bi - I Bi Bi +1 is fitted with an open ring at Bi of height h < H, so that a relative
rotation of the two rods can take place.

Figure 19 shows a double layer model structure whose curved top layer is connected
to the flat bottom layer by long bolts. The bottom layer is identical to the model shown in
Fig. 12, and the orthogonal projection of the top layer onto the plane of the bottom layer
is also identical to it. This model folds until the outer rods overlap fully, and thus dem
onstrates that the interference between rods connected to the same hinge has been suc
cessfully eliminated. Note that bracing elements could be added between the upper and
lower cords, to increase the stiffness of the structure, if desired.

7. DISCUSSION AND CONCLUSIONS

A general method for the design of two-dimensional foldable structures has been
introduced. The new method extends and generalises the trellis-type structures, based on a
tiling of parallelograms whose sides are collinear, to structures based on any tiling of
parallelograms. It has been shown that a bar structure of this type is (i) foldable and (ii)
can be made from multi-angulated, rigid rods connected by scissor hinges. This result
affords much greater freedom in the range of shapes that can be achieved, and of boundary



Foldable bar structures 1847

conditions that can be met. This approach can be easily extended to three-dimensional
dome structures.

Also, a family of elements for foldable structures has been introduced. These elements
consist of angulated rods connected by scissor hinges. It has been shown that any element
bounded by either isosceles triangles or similar triangles, with any number ofparallelograms
in between, maintains a constant angle of embrace.

Finally, a method for the design of structures consisting of multi-angulated rods that
fold along their perimeter has been introduced, and there is practically no limit to the range
of perimeter shapes that can be achieved.

These new solutions have significant implications for the design of foldable structures.
Because continuous members are used throughout, the complexity of the joint is reduced
and more efficient structural design become possible, e.g., curved trusses can be used instead
of beams. Also, the attachment of covering panels or membranes is simplified.
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